Deret Maclaurin Cosinus

Seperti fungsi sinus, kita juga bisa membuat deret maclaurin untuk cosinus. Sebelumnya kita lihat dulu bentuk umum deret maclaurin. Setiap fungsi f(x) bisa dinyatakan dengan deret maclauin sebagai berikut

Sekarang untuk fungsi f(x) = cos x, kita bisa mencari turunannya sekaligus menentukan nilainya saat x = 0

f(x) = cos x  —–> f(0) = 1

f ‘(x) = – sin x  —–> f ‘(0) = 0

f ”(x) = – cos x  —–> f ”(0) = –1

f ”'(x) = sin x  —–> f ”'(0) = 0

f(4) (x) = cos x  —–> f(4) (0) = 1

f(5) (x) = – sin x  —–> f(5) (0) = 0

f(6) (x) = – cos x  —–> f(6) (0) = –1

f(7) (x) =  sin x  —–> f(7) (0) = 0

…………………………………..

dan seterusnya

Bentuk umum deret maclaurin di atas bisa kita hilangkan suku-suku yang mengandung x pabgkat ganjil, karena pada bagian ini dikalikan dengan nol, sehingga bentuknya menjadi

Dengan mensubtitusikan nilai f(0), f”(0),  f(4) (0), dan f(6) (0) serta mengganti f(x) dengan cos x maka

Jika kita tambahkan satu suku menjadi

atau

Jadi kalau anda masih bingung mengapa kalkulaor bisa dengan mudah menghitung niai cosinus, lihatlah deret maclaurin cosinus ini.

Sekarang jika kita turunkan rumus deret maclaurin di atas, menurutmu akan menjadi apa ? Bagian kiri berupa cos x, maka jika diturunkan akan menjadi – sin x, sedangkan ruas kanan bisa diturunkan dengan aljabar biasa (turunan pangkat). Hasil dari turunan adalah sebagai berikut

atau

Jika kedua rus dikali dengan –1 maka diperoleh

Inilah deret maclaurin sinus.

Deret maclaurin cosinus ini bisa dipakaiuntuk membantu menyelesaikan limit trigonometri untuk x mendekati nol

 

 

Comments are closed.