Soal Test

PEMBAHASAN MATEMATIKA IPA SBMPTN 2015 KODE 505 no 11-15

Pembahasan no 1-5

Pembahasan no 6-10

11. Jawab : B

x > 0

Syarat turun :

f'(x) < 0

Untuk menyelesaikan bentuk ini kita gunakan grafik y = sin 2x

Pertidaksamaan Sinus

Tampak pada gambar bahwa sin 2x < -1/2 untuk

105o < x < 165o

 

12. Jawab : B

Integral luas daerah SBMPTN 2015

Untuk lebih memudahkan kita beri nama y1 dan y2

y1 = -x2 dan y2 = kx

SBMPTN 2015 integral

 

SBMPTN 2015 integral luas

SBMPTN 2015 integral luas daerah

Menurut soal

L2 = L1

 

13. Jawab : A

dengan A, B anggota {­-3, -1, 0, 1, 3}

Jika B = -3 maka

.

. 4Ax2 — 9y2 = 0

. A = -3 maka -12x2 — 9y2 = 0 ……………………..(1)

. A = -1 maka -4x2 — 9y2 = 0 ………………………(2)

. A = 0 maka -9y2 = 0 atau y = 0 …………………(3)

. A = 1 maka 4x2 — 9y2 = 0…………………………(4)

. A = 1 maka 12x2 — 9y2 = 0……………………..(5)

Jika B = -1 maka

.

. 4Ax2 – y2 = 0

. A= — 3 maka -12x2 – y2 = 0……………………..(6)

. A = -1 maka -4x2 – y2 = 0……………………..(7)

. A = 0 maka – y2 = 0 atau y = 0 (sama dengan (3))

. A = 1 maka 4x2 – y2 = 0……………………….(8)

. A = 3 maka 12x2 – y2 = 0……………………..(9)

Jika B = 0 maka

Ax2 = 0 atau x = 0 ……………………………………(10)

Jika B = -1 sama artinya dengan B = 1

Jika B = -3 sama artinya dengan B = 3

Jadi banyaknya kurva ada 10

 

14. Jawab : C

Kelas ke I : Banyak siswa laki-laki = x

. Banyak siswa perempuan = 30 — x

Kelas ke II : Banyak siswa laki-laki = y

. Banyak siswa perempuan = 30 — y

Jika masing-masing kelas dipilih satu orang maka peluang diperoleh laki-laki adalah

Menurut soal hasil ini sama dengan 7/36

Jadi

xy = 175

x dan y masing-masing bilangan bulat yang lebih kecil dari 30

xy = 175 = 1 x 175 = 5 x 35 = 7 x 25

Yang memungkinkan hanyalah 7 x 25 (semua faktor < 30)

Jadi, jika kita pilih x = 7 maka y = 25

 

Susunan siswa menjadi :

Kelas ke I : Banyak siswa laki-laki = 7

. Banyak siswa perempuan = 23

Kelas ke II : Banyak siswa laki-laki = 25

. Banyak siswa perempuan = 5

 

Peluang terpilih sepasang laki-laki dan perempuan ada 2 kemungkinan

kemungkinan 1 : laki-laki dai kelas ke I dan perempuan dari kelas ke II

. peluang =

kemungkinan 2 : laki-laki dai kelas ke II dan perempuan dari kelas ke I

. peluang =

Jadi peluang totalnya adalah

 

 

15. Jawab : B

f(x) = -x3 +3x — c

f ‘(x) = -3x2 + 3

f ‘(0) = 0 + 3 = 3

u2 — u1 = f ‘(0) = 3

ar — a = 3

Menentukan minimum f(x) = -x3 +3x — c

f ‘(x)=0

-3x2 + 3 = 0

x2 -1 = 0

(x + 1)(x — 1) = 0

x = -1 atau x = 1

karena maka kita perlu mensubtitusikan -1, 1, dan 2

f(-1) = 1 — 3 — c = -2 — c

f(1) = -1 + 3 — c = 2 — c

f(2) = — 8 + 6 — c = -2 — c

Jadi nilai fminimum = — 2 — c

 

Menurut soal

-1 = — 2 — c

c = -1

 

Soal no 1-7

Soal no 8-15

PEMBAHASAN MATEMATIKA IPA SBMPTN 2015 KODE 505

Soal Matematika IPA SBMPTN 2015 no 1-7

Soal Matematika IPA SBMPTN 2015 no 8-15

 

1.Jawab : C

x2 + y2 — 6x — 2y + k = 0

maka A = -6, B = -2, dan C = k

Pusat =

Lingkaran SBMPTN 2015

maka

(10 -k)(15+k) = 122

150 + 10k — 15k — k2 = 144

k2 + 5k — 6 = 0

(k + 6)(k — 1) = 0

k = -6 atau k = 1

 

2. Jawab : A

sin (2x + 60o) = a sin (x + 45o) = b

cos 2A = 1 — 2 sin2 A

cos 2(2x + 60o) = 1 — 2 sin2 (2x + 60o)

cos (4x + 120o) = 1 — 2a2

 

cos 2(x + 45o) = 1 — 2 sin2 (x + 45o)

cos (2x + 90o) = 1 — 2b2

 

-2sin A sin B = cos (A +B) — cos (A — B)

-2sin (3x + 105o) sin (x + 15o) = cos (4x + 120o) — cos (2x + 90o)

-2sin (3x + 105o) sin (x + 15o) = 1 — 2a2 — (1 — 2b2)

-2sin (3x + 105o) sin (x + 15o) = — 2a2 + 2b2

sin (3x + 105o) sin (x + 15o) = a2 — b2

 

 

3. Jawab : B

Vektor SBMPTN 2015

 

 

 

4. Jawab : A

Garis semula : y = -x + 2

untuk x = 0 maka y = 2 ===> garis melalui (0, 2)

untuk y = 0 maka x = 2 ===> garis melalui (2, 0)

pencerminan

perpotongan garis semula (y =-x + 2) dan cermin (y = 3) adalah

-x + 2 = 3

-x = 1

x = -1

diperoleh titik (-1,0)

titik (-1, 0) ini dilalui oleh garis semula, cermin dan bayangan

Perhatikan gambar !

garis semula melalui titik (0,2). Titik ini jika dicerminkan terhadap y = 3 diperoleh bayangan (0, 4)

Jadi bayangan melalui (-1, 3) dan (0, 4)

Persamaan bayangan menjadi :

y — 3 = x + 1

y = x + 4

 

 

5. Jawab : C

Kubus beririsan dengan limas

6RH = 4RH + 24

2RH =24 maka RH = 12

sehingga

RD = DH + RH = 6 + 12 = 18

 

Pembahasan no 6-10

Pembahasan no 11-15