Persamaan Kubik

Bentuk umum dari persamaan kubik adalah

ax3 + bx2 + cx + d = 0  dengan a ≠ 0

Persamaan ini memiliki 3 akar

Untuk mendapatkan akarnya ada 3 cara yang bisa dilakukan

1. Memfaktorkan

2. Menyederhanakan menjadi persamaan kuadrat

3. Menggunakan rumus

 

Cara I : memfaktorkan

Cara ini biasanya hanya dipakai untuk mencar akar-akar rasional

 

Contoh soal 1 :

Tentukan himpunan penyelesaian dari

x3 – 7x2 + 10x  = 0

Jawab :

x3 – 7x2 + 10x  = 0

x(x2 – 7x + 10)  = 0

x(x – 2)(x – 5) = 0

x = 0 atau x = 2 atau x = 5

Jadi himpunan penyelesaiannya adalah {0, 2, 5}

 

Contoh soal 2 :

Tentukan himpunan penyelesaian dari

x3 – 3x2 – 4x + 12 = 0

Jawab :

x3 – 3x2 – 4x + 12 = 0

x2 (x – 3) – 4(x – 3) = 0

(x2 – 4)(x – 3)= 0

(x – 2)(x + 2)(x – 3) = 0

x = 2 atau x = -2 atau x = 3

 

Jadi himpunan penyelesaiannya adalah  {-2, 2, 3}

 

Contoh soal 3 :

Tentukan himpunan penyelesaian dari

x3 – 5x2 – 25x + 125 = 0

 

Jawab :

x3 – 5x2 – 25x + 125 = 0

x2 (x – 5) – 25(x – 5) = 0

(x2 – 25) (x – 5) = 0

(x – 5)(x + 5)(x – 5) = 0

x = 5 atau x = -5 atau x = 5

Jadi himpunan penyelesaiannya adalah  {-5, 5}

 

Contoh soal 4 :

Tentukan himpunan penyelesaian dari

x3 – 5x2 – 2x + 10 = 0

Jawab :

x3 – 5x2 – 2x + 10 = 0

x2 ( x – 5) – 2(x – 5) = 0

(x2 – 2)(x – 5) = 0

   atau      atau x = 5

Jadi himpunan penyelesaiannya adalah

 

Contoh soal 5 :

Tentukan himpunan penyelesaian dari

3x3 – x2 + 6x – 2 = 0

Jawab :

3x3 – x2 + 6x – 2 = 0

x2 (3x – 1) + 2(3x – 1) = 0

(x2 + 2)(3x – 1) = 0

x2 = – 2 (tidak mungkin)

x = 1/3

Jadi himpunan penyelesaiannya adalah

 

Contoh Soal 6

Himpunan penyelesaian dari x3 – 8x2 + 19x – 12 = 0 adalah …

Jawab :

Karena tidak kelihatan bentuk istimewanya maka kita selesaiakn dengan metoda horner

Pembagian Horner pada persamaan kubik

Persamaan kubik bisa kita faktorkan menjadi

(x – 1)(x2 – 7x + 12) = 0

(x – 1)(x – 3)(x – 4) = 0

x = 1 atau x = 3 atau x = 4

Dengan demikian himpunan penyelesaiannya adalah {1, 3, 4}

 

Contoh Soal 7

Himpunan penyelesaian dari x3 – 6x2 + 5x + 6 = 0 adalah …

Jawab :

Untuk memecahkan soal ini akan lebih mudah jika kita gunakan metoda horner

Penyelesaian persamaan kubik dengan horner

Maka persamaan kubik bisa difaktorkan menjadi

(x – 2)(x2 – 4x – 3) = 0

x = 2 atau x2 – 4x – 3 = 0

Untuk menyelesaiakan persamaan x2 – 4x – 3 = 0 kita gunakan rumus ABC

 

Jadi himpunan penyelesaiannya adalah

 

 Contoh soal 8 :

Himpunan penyelesaian dari 2x3 – 3x2 + 14x + 8 = 0 adalah …

Jawab :

Sekarang kita lakukan pembagian Horner

Metoda pembagian horner

Dengan demikian kita bisa memfaktorkan menjadi

(x + ½)(2x2 – 4x + 16) = 0

atau

(2x + 1)(x2 – 2x + 8) = 0

x = -1/2 atau x2 – 2x + 8 = 0

Persamaan x2 – 2x + 8 = 0 memiliki diskriminan

D = b2 – 4ac = (-2)2 – 4.1.8 = 4 – 32 = -28

Karena D < 0 maka x2 – 2x + 8 = 0 tidak memiliki akar real

Dengan demikian himpunan penyelesaian persamaan 2x3 – 3x2 + 14x + 8 = 0 adalah

Comments are closed.